gcn
Module: gcn.py
This module implements Graph Convolution Networks (GCNs)
It provides functionality to
- Perform transformations on Graphs using GCN
- Train GCNs for a loss function
Key Features
- Built on top of base class getting all its functionalities
- Efficient neural networks implementation using equinox modules
Version Info
- 10/01/2025: Initial version
GCN
Bases: Module
Source code in scirex/core/dl/gcn.py
__call__(z, adj_mat, degree)
Initialize the gcn model with network architecture and training parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
z
|
jnp array for which the i-th row is the i-th node embedding |
required | |
adj_mat
|
the adjacency matrix. Ideally it should be a sparse matrix |
required | |
degree
|
jnp array where the i-th element is the degree of the i-th node |
required |
Output
node embeddings of the output
Source code in scirex/core/dl/gcn.py
__init__(layers, activations, key)
Initialize a GCN instance with random initial parameters
Inputs
layers: a python list indicating the size of the node embeddings at each layer activations: a python list of activation functions key: to generate random numbers for initialising the W and B matrices
Source code in scirex/core/dl/gcn.py
GCNModel
Source code in scirex/core/dl/gcn.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
|
__init__(gcn, loss_fn, metrics=[])
Initialize the gcn model with network architecture and training parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gcn
|
GCN
|
Neural network architecture to train. |
required |
loss_fn
|
Callable
|
Loss function for training. |
required |
metrics
|
list[Callable]
|
List of metric functions for evaluation. |
[]
|
Source code in scirex/core/dl/gcn.py
fit(features, adjacency_matrix, degree_array, target, learning_rate, num_iters=10, num_check_points=5)
Train the gcn
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
ndarray
|
jnp.ndarray, |
required |
adjacency_matrix
|
ndarray
|
jnp.ndarray, |
required |
degree_array
|
ndarray
|
jnp.ndarray, |
required |
target
|
ndarray
|
jnp.ndarray, |
required |
learning_rate
|
float
|
Parameter of the gradient based optimisation method |
required |
num_iters
|
int
|
Number of iterations of the gradient based optimisation method |
10
|
Returns:
Type | Description |
---|---|
Trained gcn |