poissson2d Inverse
Loss Function Implementation for 2D Poisson Inverse Problem.
This module implements the loss function for solving the inverse Poisson equation with constant coefficient using neural networks. It focuses on computing residuals in the weak form of the PDE for diffusion coefficient identification.
Key functions
- pde_loss_poisson_inverse: Computes domain-based PDE loss for constant coefficient identification
Note
The implementation is based on the FastVPINNs methodology [1] for efficient computation of Variational residuals of PDEs.
References
[1] FastVPINNs: Tensor-Driven Acceleration of VPINNs for Complex Geometries DOI: https://arxiv.org/abs/2404.12063
pde_loss_poisson_inverse(test_shape_val_mat, test_grad_x_mat, test_grad_y_mat, pred_nn, pred_grad_x_nn, pred_grad_y_nn, forcing_function, bilinear_params, inverse_params_dict)
Calculates residual for Poisson inverse problem with constant coefficient.
Implements the FastVPINNs methodology for computing variational residuals in 2D Poisson inverse problems (-∇·(ε∇u) = f) with unknown constant diffusion coefficient.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test_shape_val_mat
|
Tensor
|
Test function values at quadrature points Shape: (n_elements, n_test_functions, n_quad_points) |
required |
test_grad_x_mat
|
Tensor
|
Test function x-derivatives at quadrature points Shape: (n_elements, n_test_functions, n_quad_points) |
required |
test_grad_y_mat
|
Tensor
|
Test function y-derivatives at quadrature points Shape: (n_elements, n_test_functions, n_quad_points) |
required |
pred_nn
|
Tensor
|
Neural network solution at quadrature points Shape: (n_elements, n_quad_points) |
required |
pred_grad_x_nn
|
Tensor
|
x-derivative of NN solution at quadrature points Shape: (n_elements, n_quad_points) |
required |
pred_grad_y_nn
|
Tensor
|
y-derivative of NN solution at quadrature points Shape: (n_elements, n_quad_points) |
required |
forcing_function
|
callable
|
Right-hand side forcing term |
required |
bilinear_params
|
dict
|
Additional bilinear form parameters (if any) |
required |
inverse_params_dict
|
dict
|
Dictionary containing: eps: Diffusion coefficient to be identified |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Cell-wise residuals averaged over test functions Shape: (n_cells,) |
Note
The weak form includes: - Diffusion term: ∫ε∇u·∇v dΩ where ε is the constant diffusion coefficient to be identified.