Chebyshev
Module: basis_2d_qn_chebyshev_2.py
This module implements a specialized basis function class for 2D finite elements using Chebyshev polynomials. It provides functionality for computing basis functions and their derivatives in two dimensions, primarily used in variational physics-informed neural networks (VPINNs) with domain decomposition.
Classes:
Name | Description |
---|---|
Basis2DQNChebyshev2 |
Main class implementing 2D basis functions using Chebyshev polynomials |
Dependencies
- numpy: For numerical computations and array operations
- scipy.special: For Jacobi polynomial calculations and evaluations
- .basis_function_2d: For base class BasisFunction2D implementation
Key Features
- Implementation of 2D element basis functions using Chebyshev polynomials
- Computation of function values and derivatives up to second order
- Tensor product construction of 2D basis functions from 1D components
- Specialized handling of Jacobi polynomials for test functions
- Support for variable number of shape functions through initialization
Version Info
27/Dec/2024: Initial version: Thivin Anandh D
References
- hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition: https://github.com/ehsankharazmi/hp-VPINNs/
Basis2DQNChebyshev2
Bases: BasisFunction2D
A specialized implementation of two-dimensional basis functions using Chebyshev polynomials for Q1 elements.
This class provides a complete implementation for computing basis functions and their derivatives in two dimensions, specifically designed for use in variational physics-informed neural networks (VPINNs) with domain decomposition. The basis functions are constructed using Chebyshev polynomials through Jacobi polynomial representations.
The class inherits from BasisFunction2D and implements all required methods for computing function values and derivatives. The implementation follows the methodology described in hp-VPINNs research by Ehsan Kharazmi et al.
Attributes:
Name | Type | Description |
---|---|---|
num_shape_functions |
int
|
Total number of shape functions in the 2D element. Must be a perfect square as it represents tensor product of 1D functions. |
Methods:
Name | Description |
---|---|
value |
Computes values of all basis functions at given points |
gradx |
Computes x-derivatives of all basis functions |
grady |
Computes y-derivatives of all basis functions |
gradxx |
Computes second x-derivatives of all basis functions |
gradyy |
Computes second y-derivatives of all basis functions |
gradxy |
Computes mixed xy-derivatives of all basis functions |
Implementation Details
- Basis functions are constructed as tensor products of 1D test functions
- Test functions are derived from normalized Jacobi polynomials
- Special cases are handled for first few polynomial degrees in derivatives
- All computations maintain double precision (float64)
- Efficient vectorized operations using numpy arrays
Example
Notes
- num_shape_functions must be a perfect square
- All coordinate inputs (xi, eta) should be in the range [-1, 1]
- Implementation optimized for vectorized operations on multiple points
- Based on hp-VPINNs methodology: https://github.com/ehsankharazmi/hp-VPINNs/
References
Kharazmi, E., et al. "hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition"
Source code in scirex/core/sciml/fe/basis_2d_qn_chebyshev_2.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
|
dtest_fcn(n_test, x)
Computes first and second derivatives of test functions.
Calculates derivatives of test functions constructed from Jacobi polynomials, handling special cases for n=1,2 separately.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_test
|
int
|
Number of test functions |
required |
x
|
ndarray
|
Points at which to evaluate derivatives Shape: (n_points,) |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
(ndarray, ndarray)
|
First and second derivatives First element: First derivatives, shape (n_test, n_points) Second element: Second derivatives, shape (n_test, n_points) |
Notes
Special cases for n=1,2 ensure proper derivative calculations following hp-VPINNs methodology.
Source code in scirex/core/sciml/fe/basis_2d_qn_chebyshev_2.py
gradx(xi, eta)
Computes x-derivatives of basis functions.
Evaluates partial derivatives with respect to x of all basis functions at given coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xi
|
ndarray
|
x-coordinates at which to evaluate derivatives Shape: (n_points,) |
required |
eta
|
ndarray
|
y-coordinates at which to evaluate derivatives Shape: (n_points,) |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Values of x-derivatives Shape: (num_shape_functions, n_points) |
Notes
Uses product rule with x-derivatives of test functions in x-direction and values in y-direction.
Source code in scirex/core/sciml/fe/basis_2d_qn_chebyshev_2.py
gradxx(xi, eta)
Computes second x-derivatives of basis functions.
Evaluates second partial derivatives with respect to x of all basis functions at given coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xi
|
ndarray
|
x-coordinates at which to evaluate derivatives Shape: (n_points,) |
required |
eta
|
ndarray
|
y-coordinates at which to evaluate derivatives Shape: (n_points,) |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Values of second x-derivatives Shape: (num_shape_functions, n_points) |
Notes
Uses product rule with second x-derivatives of test functions in x-direction and values in y-direction.
Source code in scirex/core/sciml/fe/basis_2d_qn_chebyshev_2.py
gradxy(xi, eta)
Computes second x-derivatives of basis functions.
Evaluates second partial derivatives with respect to x of all basis functions at given coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xi
|
ndarray
|
x-coordinates at which to evaluate derivatives Shape: (n_points,) |
required |
eta
|
ndarray
|
y-coordinates at which to evaluate derivatives Shape: (n_points,) |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Values of second x-derivatives Shape: (num_shape_functions, n_points) |
Notes
Uses product rule with second x-derivatives of test functions in x-direction and y derivative values in y-direction.
Source code in scirex/core/sciml/fe/basis_2d_qn_chebyshev_2.py
grady(xi, eta)
Computes y-derivatives of basis functions.
Evaluates partial derivatives with respect to y of all basis functions at given coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xi
|
ndarray
|
x-coordinates at which to evaluate derivatives Shape: (n_points,) |
required |
eta
|
ndarray
|
y-coordinates at which to evaluate derivatives Shape: (n_points,) |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Values of y-derivatives Shape: (num_shape_functions, n_points) |
Notes
Uses product rule with values in x-direction and y-derivatives of test functions in y-direction.
Source code in scirex/core/sciml/fe/basis_2d_qn_chebyshev_2.py
gradyy(xi, eta)
Computes second x-derivatives of basis functions.
Evaluates second partial derivatives with respect to x of all basis functions at given coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xi
|
ndarray
|
x-coordinates at which to evaluate derivatives Shape: (n_points,) |
required |
eta
|
ndarray
|
y-coordinates at which to evaluate derivatives Shape: (n_points,) |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Values of second x-derivatives Shape: (num_shape_functions, n_points) |
Notes
Uses product rule with second y-derivatives of test functions in x-direction and values in y-direction.
Source code in scirex/core/sciml/fe/basis_2d_qn_chebyshev_2.py
jacobi_wrapper(n, a, b, x)
Evaluates Jacobi polynomial at specified points.
Computes values of nth degree Jacobi polynomial with parameters (a,b) at given points x.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
Degree of Jacobi polynomial. Must be non-negative integer. |
required |
a
|
int
|
First parameter of Jacobi polynomial |
required |
b
|
int
|
Second parameter of Jacobi polynomial |
required |
x
|
ndarray
|
Points at which to evaluate polynomial Shape: (n_points,) |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Values of Jacobi polynomial at input points Shape: Same as input x |
Notes
Wrapper around scipy.special.jacobi that ensures float64 precision and proper array handling.
Source code in scirex/core/sciml/fe/basis_2d_qn_chebyshev_2.py
test_fcnx(n_test, x)
Computes x-component test functions.
Evaluates the x-direction test functions constructed as differences of normalized Jacobi polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_test
|
int
|
Number of test functions to compute |
required |
x
|
ndarray
|
Points at which to evaluate functions Shape: (n_points,) |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Values of test functions at input points Shape: (n_test, n_points) |
Notes
Test functions are constructed as differences of normalized Jacobi polynomials following hp-VPINNs methodology.
Source code in scirex/core/sciml/fe/basis_2d_qn_chebyshev_2.py
test_fcny(n_test, y)
Computes y-component test functions.
Evaluates the y-direction test functions constructed as differences of normalized Jacobi polynomials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_test
|
int
|
Number of test functions to compute |
required |
y
|
ndarray
|
Points at which to evaluate functions Shape: (n_points,) |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Values of test functions at input points Shape: (n_test, n_points) |
Notes
Test functions are constructed as differences of normalized Jacobi polynomials following hp-VPINNs methodology.
Source code in scirex/core/sciml/fe/basis_2d_qn_chebyshev_2.py
value(xi, eta)
Evaluates basis functions at given coordinates.
Computes values of all basis functions at specified (xi,eta) points using tensor product of 1D test functions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xi
|
ndarray
|
x-coordinates at which to evaluate functions Shape: (n_points,) |
required |
eta
|
ndarray
|
y-coordinates at which to evaluate functions Shape: (n_points,) |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Values of all basis functions Shape: (num_shape_functions, n_points) |
Notes
Basis functions are constructed as products of 1D test functions in x and y directions.